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NATIONAL ADVISORY COMMITIEE FOR AERONAUTICS.
TECHNICAL NOTE HC. 188.

LONGITUDINAL OSCILLATION OF AN AIRPLANE.*
PART I - PROBLEM AND METHOD.
By  R. Fuchs and L. Hopf.

Introcduction.

All aerodynamical calculations, waich form the basis of the
designing and analysis of airplanes, are founded upon an assump-
vion of uniform steady motion. There are, however, many prob-
lems of practical importance which canrnot be disposed of by
means of such caloulations. To %hese belong all quegtions re-
lating to maneuverability and to the maximum stresses undergone
duvring flight. Such oroblems have hitherto been solved by apply-.
ing established scientific principles relating to steady flight,
as conformably to the facts as possible and, where this method
was not practicable, by relying in individual cases, on the
opinion of the pilot. If, however, aerodynamics is to afford a
vider basis for the art of flying, i% must elucidate the prob-
lems of accelerated and disturbed motion, phenomena in an acci-
dental or intentional disturbance through the deflection of the
rudder or elevator, or any other change in the conditions of

flight.

* From Technische Berichte, Volume III, No. 7, pp.- 317-330.



Our experimental knowledge is sufficiently extensive to af—_
fora, in many instances, tne necessary basis for the mathematical
analysis of “hese phenomena and, where such is not the case, the
theoretical investigation of the problem can indicate the neces-
sary exveriments on models and actual flight.

The treatment of the whole problem may, at first, appear
hopeless to the theorist. The problem is +that of a body with
8ix degrees of freedom moving in a fluid (air) and on which
forces are acting, whose relation to the position of the body is
only known empirically. Bryan's great service is the circum-
vention of these difficulties by the method of small oscilla-~
tions and the opening of a way for the treatment of thege prob-
lems, even though the method is restricted to simple conditions.
The method of small oscillations is only apvlicable to condi-~ |
tions in the neightorhood of a known state of equ;librium and,
as applied to the present instance, is as foilows:

An airplane is in steady flight along a given line. The i
quantities which determine its position and conditions of flight
(mamely, velocity, angle of atback, slope of the flight path,
angle of bank, rate of side-slivpirg and curvature of flight
path) are all interdependent, when the engine generates a defi-
nite propeller thrust and the rudders have a definite position.
The values of the above quantities are determined by the condi-

tions of equilibrium in steady flight, which have never been

satisfactorily discussed. If one or more of these variables
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have not the value required by the conditions of equilibrium,
then the oscillation cannot be steady. It is sinmply assumed
that none of these variableg differs greatly from the value coT-
responding to ecuilibrium in steady flight.

A1l terms of the equations of motion, which are due to dis-
turbances, are then expanded in powers of the small displace-

ments and only the firet term of each series is retained.

The equations in this form are linear and easily solved. No

further fundamental difficulties present themselves and only the
mathematical work (which is sometimes very hard), has o be per-
formed.

All previous calculations refer t0 small departures from
rectilinear £light, for which there are two independent groups,
each consisting of three equations of motion. Longitudinal and
lateral oescillations take place, in this case, independently of
one another. Changes in speed, in the slope of the flight-path
and in the angle of attack produce no lateral or unsymmetrical
motion oscillations. Banking, slde-slipping and yawing, so long
as they are small, have no effect on the symmetrical oscillations
which are determined by the three abtove-mentioned varisbles.

On the contrary, it is impossible to separate still further the
lateral oscillations and treat rotations around the longitudinal
axig X, (rolling), separately from rotation around the vertical
axis Z, (yawing).

In practically all contributions which deal with the problem
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thus simplified, only the guestion of s*ability in reciilinear
flight is raiged. The actual course of a disturbance is not

followed out, but only the question is raised as tc whether an

airplane will finally returan to equilibrium from the disturbed

condition due to the small variables insroduced, or whether i£
nas a tendency to diverge further from it. In the former case,
the flight condition is termed stable, in the latter, unstable.
The importance of and the effect due 40 aerodynamical quantities,
as determined by the design of the airplane, are brought out by
this procedure, but, on the contrary, it is not clear as to vhat
significance is given the term starility and what Qualities the
airplane will exhibit in the hands of the pilct. Feither can

it be maintained that the aerodynamic theory of stability has
borne frulf in practice, except possibly in England, where it
has been supplemented by svstematic tests on models. So long as
the stability of only one fligh%t condition is examined, all the
above-mentioned Qquestions remain undecided. Above zll, we do
not undersitand how stability and maneuversbiliiv are mutually

relatsed and whether an airplane can be handled as well when con-

structed with a high degree of stability, arnd how an airplane re- .

acts to an accidental disturbance.

Reissner* first recognized the need of investigating wore

deeply into the actual facts and of going beyond the question of_r_

mere possession of stebility to describe the actual course of the

digturbed motion. Reissner and his punil Genlen** were the first

*Zeitschrift flr Flugtecknik und Motorlufitschiffanrt, 1910,
Nos. 9 and 10. X
**UDissertation,” wublisked by R. Oldenbourg, Munich, 1913.
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to work out the problem for lateral oscillations. Gehlen not on-
ly solves the equation of stability when longitudiral and lateral
oscillations are mutually indepencent, but also determines +the
integration constents, from arbitrary initial.values_of a dis-
turbance or of a movement of a rudder, and gives a complete de-
scription of the phenomena inwolved, namely: the angle of bvank,
the radius of the turn, and the érift of the airplane.

This analysis, which represents the utmost that can be at-

tained by the method of small oscillations, still has the defect

that it is restricted to small deviations from rectilinear flight.

In curve-flight the problem is not one of small deviations only.

The problems cannot be solved without taking into account, at
the same time, the longitudinal oscillations, which are separated
from the lateral oscillations in the method used for smail oscil-
lations. TFor instance, the question today devends on whether an
airplane is ascending or descending in a turn. For finite oscil-
lations, which may differ to any extent from rectilinear flight,
even now the problem cannot be attacked, since not even the gen-—
eral case of steady motion which inciudes both rectilinear and
curving flight, has yet been solved.

The question of longitudinal oscillation is different, since
there are, of course, steady longitudinal oscillations writh any
desired veloclity, angle of atfack end slope of flight path, with-
out lateral oscillations. Such a steady forward motion presents
many points of technical importance, some of which we will touch

upon. There is, for instance, the question of static stability,
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on which something has already been published in the Technische
Berichte.* It does not follow, from static considerations, as

to vhat magnitude of static stability should be chosen for an
airplane, according to its purpose, and even analysis by the o
method of sﬁall oscillations furnishes no conclﬁsion on ‘this
point. It is known that airplanes which are ordinarily unstablse,
may nevertheless fly well under special circumstances. It is
also known that even with a stable airplane, conditions may arise
out of which the airplane can only be rescued with difficulty.
The best known example is "stalling," in which the airplane no
longer obeys the elevator. Although the result is usually an
unsymmetrical oscillation, it is generally bégun by "stalling®
(that is, a symmetfical condition of flight into which enter

hitherto unexplained relations). Phenomenas have also been 0b-

served in diving, which may give rise to danger. The problems .

of stressing are purely problems of longitudinal oscillation,
since airplanes have hitherto only been tested under symmetriqal
loads. We have to determine what centrifugal forces appear in
flattening out after a dive, or what 1if% coefficients and ve-
locities combine, in passing from high speed at emall angles of
attack to low speed at large angles of attack.

There are, as yet, no analytical methods for longitudinal

oscillations as valuable as those of Gehlen for lateral oscilla-

* Technische Berichte, Volume I, No. 1, p.18, and following;
Volume I, ¥o.4, p.108 and following; Volume II, No.l, p.33; Vol-
ume II, No.3, p.463 and following. )
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tions.* Ingtead of extending thess caloulations, based on the
method of small oscillations, the range of which is difficult %o
perceive, and which lead to most complicated calculations, we
have adopted another method which is not resitricted to small os~
cillations. This was encouraged partly by the results of a -
ter of purely practical numerical computations (according to L
vhich, apnroved airplanes appear to have almost neutral equilib-
rium) and partly by Lanchester's "Theory of Phugoids," which
includes general longitudinal oscillations differing widely from
steady flight.

Lift is considered as the only air force in the phugoid theo-
Ty. Drag is neglected, thus eliminating all dissipative forces,
and the principle of energy supplies a simple scolution of the* o
equations of motion. The angle of attack is further assumed to
bé invariasble during the whole period of ogcillation. In this
-7y, all empirical relations are excluded and the whole motion
may be analysically presented. The significance of these simpli-
fications will be gone into in a subsequent section. However
bold they may seem, the result nevertheless agrees wlth motions
actually observed in flight. "ILooping the loop" was recognized
in the phugoid theory long before Pegoud. Paper darits, such as
children play with, and gliding models, thrown into the air, de-
scribe motions which agree exactly with those Tequired by the
phugoid theory. Actual airplanes, when left to themselves, do
not, however, fly in phugoids and the suvpositions of the phugoid

theory must, therefore, fail entirely in the domain of full-gize

* Papers by Bryan and his pupils, which are difficul: to obtain,
appear, however, to deal with this subject.
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controllable aircraft.

It has been nointed oﬁt by Von Karman and Treffiz* that the
phugolid oscillation gives a golution for the ordinary equatiopq_ B
of longitudinal oscillations when the stabtic stability is infinite.
An airplane then resists every change in its angle of attack and |

J—

the most important assumption of the phugoid theory is satisfied-" B
The possidility of controlling the airplane disappears completely,
since transition from one condition of flight to another is incon-
celvable, without changing the angle of attack. Since no airplane
can be built which will describe a phugoid, the phugoid theory
is not suitable for the elucidation of all these relations. It
failes to soive the most important problem of all, namely, “hat qf
controllability. WNumerical calculations, in fact, lead to the
anticipated result tha+t the equilibrium of serviceable aizplanes
1s not infinitely stable, but, on the contrary, is very emall
(positive or negative) and that airplanes, in the first approxi-
mation, are neu*tral (Technische Berickhte, Volume II, No. 3, p.463).
As will be shown later, neutral equilibrium greatly simp115
fies the equations of oscillation. In the simplest case, indeed,
it is not the angle of attack that remains unaltered, butv the
angle betwcen the longitudinal axis of the airplane and the hor;—

zontal. The other eQuations can be easily solved, dbut not in a

closed expression, as in the phugoid theory, since the forces only

devend. empirically oa the now variable angle of attack. The solu-~

* Uber Léngsstabilitgt und. Léngsschwingungen von Flugzeugen'
(Longitudinal stability and longitudinal oscillations of airplanes),
Jahrbuch der Wiseenschaftlichen Gesellschaft fur Luftfahrit, Volume
ITI, 1914-15, p.118.
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tion, however, exhibits one very definite characteristic, namely,
the oscillation which it repressuts hag two distinct pheses with
respect to time, in that the forces at rightv angies to the flignt-
path first reach equilibrium and then (much more glowly), the '
Torces in the direction of flight.

Our further considerations are based on this fact. The re-~
gult is used suggestively, in an attempt to. find an approximate
solutlion of the non-neutral airplane having the above"describeé_

characteristic. It is acsumed that the velocity changes more
slowly than the other terms determining the conditions of flight.
The method has in every case proved applicable. Iﬁ leads o a
step-by-step integration of the equations of oscillation from thqz
original condi#l on, but the steps are so long that rarely more
than two are required and, within the range of each step, the in-_
dividual quantities are obtained in cloeed form, as solutions of
linear differentisl equations. -
By thia method, it is easy to represent the most important
part (the initial stage) of the course of an oscillation without
being limited to fixed conditions. A variable angle of the con-
trol surface, slow application of the conirols or a beck and.gé:ég
motion of the controls can, in this way, be as easlly expressed
as any accidental external disturbances, gusts, etc. In the first
part, the method will be worked out and the formulas given, while,

in the following parts, definite prbblems will be treated.
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I - Symbols Used in Oscillation Equations.

An%%e foimed with horizontal by tangent to flight-path
18

Angle Pbetween upper wing and horizontal (Fig. 1).

Angle of attack, angle between chord of upper wing and
tangent %o flight-path;

angle betveen onrepeller axis and flight-path
hence o - @ = b R

Angle of incidence between upper wing and propeiler axis,
X =8-a (Fig. 1);

Total weight of airplane in kilograms;
Propeller thrust in kilograms;
Area of supporting surface in m;

Resultant speed of airplane in meters per second, con-
sidered positvive in the direction of flight;

Specific weight of the air in kilograms per m® ;
Acceleration due to gravity = 9.81 meters per second?®

. 2,
Dynamic preseure = = X 5 X V3

and Op coefficients of 1ift and drag;

L=qgs$8 ¢ (1ift); D =q 8 Cp (drag)s;

Moment of forces of airplane about ite center of gravity,

measured in such a way that a moment is positive when it

turns the nose of the airplane downward. The positive
direction of the turning moment is, therefore, opposite
to that of the angles 6, a, X .
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Forces in the Direction of Fiight.— In the direction of flight
there act: a component of the propeller thrust, T cos®, a oo?po—
nent of the force of gravity, -W sin X ; and the air resistence,
-Cp @ S. We therefore obtain

=Tcoscp—Wsin'X,—%-GD—gSV2 (1)

&0

E
g

Forces at Right Angleg to the Direction of Flight.~ There act

at right angles to the direction of flight: =a component of the

propeller thrust, T sin @; a component of the force of gravity,

~W cos X ; and the 1lift, Cp q S. To this gt be added, in curve-

2 -
flight, the centrifugal force g-x ¥—3 in which r is the radius

of curvature of the flight-path. To determine T, we have

(Fig. 2) the equation

Vaéat-g~x
T

The centrifugal force acts in the direction of gravity, when
d X is positive. If the direction of gravity is considered neg-
ative, the centrifugal force is written

AR .
g v at

Since there are no components of velocity at right angles to the
flight-path, we obtain

- ax R 1 A =
— m p = — S (II)
0= v 3% + T sin @ ¥ cos™ K + 3 z Ct V .

woments.— If X is the radius of gyration of the airplane

about its center of gravity, the positive direction of the moment
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being opposite to that of increasing 6, we have
E 2 _...__.da 8 = -~ M . -
g k d._ta ) - .

In finding the value of the moment, it as borne in mind

that M depends upon V,o and the angular velosity %g . T

The resultant moment M, is principally made up* of the moments
of the wings, together with that of the horizZontal stabilizer
and elevator. Assuming as usual, that the mowent is proportional

to the square of the velocity and is a linear function of o,

¥= (mp +m,a) V?

_au
da’

mined by the position of the elevator at the time. This, in

and m V° the go-called static stability. my, is deter-

turn, fixes the angle of attack at which the moments are in equi-
librium. I+% cannot, of course, be assumed that m, 1is the same
for all conditions of flight. If, however, the equations are
taken for successive intervals of time, within which the angle
of attack does not vary too ruch, it mey then be safely assumed
that m 1z constant for the duration of such an interval. An
interval can, in any case, last only so long as the position of
the elevator does not vary, that is, so long as my has the
same value.

When 6 itself varies with the time, the moment is a func-

de p

tion of this variation, 3t = © . To obtain the differential

* Zur Berechnung der L&ngsmomente von Flugzeugen (Calculation of
the longitudinal moments of airplanes), Technische Berichte,
Volume II, No.3, pp.463-483.
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coefficient of this relatioﬁ; the damping, it must be remembered
that any variation of 6 affects a as well as V. The effect
on V may be neglected, since it is very smell, and even ﬁhe_
alteration of & need only be introduced in the calculation for
the moment of the horizontal stabilizer and elevator. An estimate
indicates that the damping factors, which allow for the variation
of V, only amount to fs and the damping effect of the wings
to only ga, the damping of the horizontal tail plane beirg

taken as 1. If, therefore, Mﬁ is the moment of the horizontal
tailplane and elevator, it is only necessary, in the expression

for M, %o add

aMm 5 _ dMy da ¢
ae da 4aé

In order to be able to express the ratio %% let Ty indi-

cate the distance of the middle of the horizontal tail surfaces

from the center of gravity. By a roitation 36, around the axis,
the horizontal tail surfaces are lowered by Ty 46 . If the air-
plane simultaneously advances a distance of dx, +the anglie of
attack increases by A a, so that | —

r-df T é
fan A = b = g _ o2

dax

The cosine of the small angle which the horizontal tailplane
maxes with the propeller axis, is here taken as unity. With the
small size of the angle in question, the tangenﬁ may be replaced

by the arc and we then obtain

R Nel
3
il
e
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The equation of moments thus takes the form

$£6 _ (e _ _ ag 7L
in which
r.
m=-8 S8 5. 8 &M (1)
Wk da 7V Wk da V

while f 1is a constant determined by the position of the ele-
vator at the time.
Ny

In equations (I) and (II) we put "4 = & - a; further be-

a
cause of the small angles: cosa= cos® = 1; eino = gz z; and

8ing® = gé%g; all angles being measured in degrees. On putting

9 .

gg = Y, the différential equations becone

dv _ Tg R 1 A 2

&L = - + —8- -+Z0psvV Ia)

at W g sinG 573 cosga 2y D {

da — 1 T . 3 - - 5713 _A'_ ~

"'_.E—Y F[-ﬁg(a—lw)+57.:>gco§e+g51nea]——2——gGch
(IIa)

d—'—q_'_—_ T

at i (I1Ia)

i}l:: (f - ma) vz -aYv (Iva)

4 few additional remarks may here be made on the analyti-
cal expression for the propeller thrust. If we assume* that

t@e thrust decreases as the sguare of the velocity (which is

* An exact basis for uhiS law is unforiunately lacking, as yet, .
The attempts by Xann {Technische Berichte, Volume I, No.6, vp.
232-241) would here be too elaborate. The present assumption
agrees approximately with the expression derived by Everling

(Zeitschrift fiir rlugtechnlk und Motorluftschiffahrt, 1016, p.137,
equation (8).
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only approximate) or, in other words, that the thrust is repre-

sented (within the range discussed) by the parabols e —

T =T, -pV> (2)

(in which, of course, T, is not exactly the thrust when stand-

o)
ing.still)then p is still a Ffunction of the density of the air.
We will, however, assume that the altitude of the airplane Goes
not change materially within the limits of one of the time in-
tervals. considered, and that the density of the air therefore
remains approximately constant. In equation (IIa), T .may be
considered constant, because %% (o - ip)V 1is significant in
comparison with §Z§§.%:CL SV and also because the propeller“
thrust plays no part in this egquation. In order to adapt equa-

tion (2) to equation {(Ia), we then write

T=1T, -Jﬁ-;-‘svap‘

and consider p' combined with 0Op, thet is, when flying with

the engine going, the coefficient of drag is correspondingly igj_
creased. T can then be considered invariable in the differen-
Tial equations. Moreover, an increase in Cp must also be made

for steep gliding flight, when the propeller is runhing light.

IT. Airplane with Heutral Equilibrium.

When static stability is zero and the moment does not change

with the angle of attack,

m= 8 27 4d¥ _ 4
7X° V° da
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In order tha%t the airplane may be in equilibrium and +that
the moments set up by the wings and the tail may balance, it -is
necessary for the position of the elevators to e chosen so that

f = 0. The airplane is then in neutral equilibrium and equation

(Iva) becomes

- f4a7Vas
%%-=—d‘¥ vV, also ¥ o

il
0
(]

(1)

Assuming that when t =0, v=32= 0, 1t follows tnat
€ =0, that is, Y= 0. In this case, therefore, the angle
which the upper wing makes with the horizontal remains unaliered.
Equations (IIIa) and (IVa) are now eliminated and the vari-

ations of V and o are determined bv

g g A

%’%:% - g sin 8,+ g5 cos eo-a-%‘i—?SCDVz: (2)
da _ B7.3 g cos 6 57.3 M 2
at ~ v ¢ - S5 80 V- (_5)

The terms . %g(a - iy) + g sin & o of equation (IIa) are
omitted in equation (3), since they are very small in comparison _
with 57.3 g cos 6, . This can always be done when €, does not
approach 190°.

From equations (2) and (3), V and o must now be calculat-
ed as functions of +. It is convenient, in many cases, to plot
simultaneocus values of &« and V as coordinates. The following
Tule is important for the discussion of the resulting V,0 curve.

For each ©

s there is, in the V,a plane, a curve, along which
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there is equilibrium of the forces in the direction of flight.

This curve is obtained by putting %%-= 0 in equation (3) and

then expressing V as a function of o. For each 8,, There is

also a curve, along which there is equilibrium of the forces at

Tight angles to the Rirection of flight. Thie curve is derived

from equation (3) by putting %% = 0. There is complete equilid-

rium of the forces at the point of intersection of these two

curves. Figs. 3 to 5 show these curves for three different values

of Qy 8o that there is equilibrium when a = 30 in Fig. 3,

@ = 10° in Fig. 4, and a = 15° in Fig. 5. We have taken

> _
W= 1,530 kg; S = 41.3 m?; T=485-O.05X%X§XSV2§ o
A A i
— = . o 1
x, = 0-81; 5 X e - 15.5 + The values for Cp and Op aTe taken

from the polar diagram of the Dfw ¢ V. The %wo equilibrium

curves intersect in the V,a pléne in a second point, in addition
to the point for which they are calculated. In the later inves-
tigations of the so~called "stalled" condition, the importance

is shown of the question as to whether this second intersection

is at a greater or a smaller angle of attack then stalling. We_
mist, therefore, compute immediately at what value of Gy the two
curves of equilibrium just touch each other. If we write the
equations, obtained by putting %%-= 0 and %%-= 0 in equations

(28) and (3), in the following form
vV = 8(90,0.), v =7~(90,@):

we obtain, for the desired point of contact,
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ds . d¥ =
da ~ ga’ ® * - (4)

From the second of these equations we obtain, for each «a, +he

corresponding 6, of complete equilibrium. We further find

g5 _ ax\d8 , ds _ 4% _ .
(&% ~ a5 %o Tq% T d T ° (5)
a&
and, consequently, d_cGJ.Q = 0. If, therefore, 6, is plotted

against o for all positions of equilibrium, this curve must have
a maximum value for the point of contact.

From equation (4) it follows that

& SN\ g, (8)
gda CL/

The numerical factor 57.3 must not be forgotien, when a is ex—

pressed in degrees.

IIT. Analvtical Calculation of Heutral Equilibrium in Flight.

In Figs. 3 to 5, using the data for the airplane Dfw C v,
in addition %o the curves of equilibrium for several solutions
of differential equations, simultaneous values of V and o

are plotted by means of a numerical integration. From all these

curves, it will be seen that (for a point V,a at some distance

from the curve %_%= O of the equilibrium of forces at right

angles to the direction of flight) the corresponding integral )

curve always runs almost parallel to the o axis, so that varia-

tions in o correspond to much smaller variations of V. In



- 19 -

other words, the forces at right angles to the direction of flight
attain a state of equilibrium much more rapidly than those in the o
direction of flight. The reason is that much smaller values ap-

pear on the right side of equation 2 (II) than of equation 3 (III)..

Only when we approach the curve of equilibrium da _ 0, does the

dt
av da
ot at become the same.

Accordingly, in the analytical calculation of the variatiqns

order of magnitude of and
in the velocity and in the angle of attack, each step will be di-
vided into separate intervals of time.

Case A.- Let us suprose that the equilibrium of an airplane
has been disturbed, so that, ai the beginning of the unsteady
flight thus initiated, the velocity V, and the angle of attack

¢, determine a point far removed from the V,a curve %%’= 0.

The return toward neutral equilibrium must first of all be exam—
ined, as to the time when the forces ak right angles to the line
of flight are approximately in equilibrium. As a first approxi-
mation, we put V = V, and then determine, from equation 3 (II)

da _ 57.3 g cosf _ 57.3 A
dt Vo 2 W

S Vo. Oy, (1)

In carrying out this integration, only the time intervals
will be considered, during which Cy, may be regarded as a lin-
ear function of o«. This is possible with Cp through a wide
range, unless we come quite near the maximum 1ift. In the neigh-
borhood of this maximum value the rangg becomes smaller and the
time intervals of the integration must be taken correspondingly

smaller.
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If we put for Cp in equation (1) -

Oy = Opo + CLi® (2)
and further, for shortness
- 57.3 X '
€= 27 % S, (3)
equation (1) then takes the form
o =
de_ 57:8 8 0086g _ . g; v, - €0p1 Voo (1a)

dt Y,
The solution of this equation, which has the value
for = 0, 1is
- Vot
=1L+ (g, - L)e €CL1 Yo (4)

when

57.3 cosd, Ciq -
2 : -

€Cr1 Vo Cn1
In order to make a second approximation for V, this value
is put for o, together with V = V5, on the right-hand side

of equation 2 (II)-

av _ Tg _ : + g cosby o - £ ¢
at  w _ esing 57.3 57.% D

Vs (8)

and takes, for simplicity in the time interval under considera-. ...

tion, as a linear function of

Cp = Cpo * Cpt (8)
A less simmle expression offers no difficulty, but makes

;the result less concise, without affecting it materially. This __

gives
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. g cosép € Cpi Voo N\

- + ( -

g sin b 4 5723 57.3 b=

(g cos€y, € 0Opy Vo2 \ (o L) ~-€Cni Vo
57.3 57.5 o~ e

t

€CD.O ch N
57.3 .

(7)

We find, by integration, the following solution which has

the value 7V

when

v

= Vo for + = 0:
- t
=V, -P+ng+pe LYo (8)
_ Cn1 Vg _ g cos€g \ (@, - L)
' 57.3 Cy  57.3 <Ot Vg © ’ ]
3

. - rg casfq € Opi Vo° N € Opo Vo

-— + - - L - s

Example: In the above numerical example, S = 41.3 m%;
W = 1530 kg;

To the values of Cp
be added,

and also the coefficient of structural drag 0.0336.

T =485 - 0.05 X

A

)\. o

= 0.81,

i
2

1
3

x =8 v,
g

Moo 1

g 15.2

A

in thé polar diagram

in accordance with the rTule for

(Dfw C V),

there mugt

T, the amount 0.05

according to the dimensions of the model, put

CLo

For @

We obtain:

= 0.,

335, Cpq =
=7O
- 4.84 + (o,

We may then,

0.0672; Opo = 0.115, Cpi =.0.00562

_ 10300 , 4. 84

0

, there is equilibrium when a = 3°.

—0.0543 Vot

(9)



V=7, - (0.00148 Vo - 243 (a 10800 . 4 g4\ 4
°© w0\ 7o /

+ (O-B'i’ + *:60 - 0.00124 1r3\-b + (10)
O

+ (0.00146 v, - 2:13 ) (5, - 1090 4 o, 36) 070" Vo

These expressions will be discussed later in a numerical

example.

Case B.- If the point determined by Vo, and c¢o in the o

V, & plane is very close to the V,a (_%%C—Lf:. 0) curve at the com-

mencement of the motion, we then find, in conirast to Case A, that

the variation of TV is of the same order as that of a and we

mist congider the two equations together

v _ Ig _ £ -
as = w 2 sin G°+ 57 .3 cOs e a

% (Cpo + Op1a) V2 =% (¥,0), (1)

de . 57.3 g cosﬁﬂ 3
3t 7 -€(Cpo * C1® V = s(V,0) (12)

If a solution commences close to +the equilibrium curve
da . . .
at = 0, as assumed here, simultaneous values of V,a will remain

close to it throughout. To make this clear, we will consider the
solution again in time intervals, within which % (V,a) and

s(V,d may be regarded as linear (which is obviously always pos-
sible) and we will suppose the final values V,a of any time in-

terval, to be the initial values Vg,a, of the succeeding inter-
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val. ZExamples show that, in pracvice, only one or two time

vals are required.

For a single time interval, we have

.
%%': =‘x' (VO:G'O) + pl(v Dl VO) - Q1(Q' - G’o)-
da ,

2 = 5(V5,%) + PV = Vo) + qa(* - ) -

At the beginning of the first interval, s(Vy,%) 1is

almost O arnd we have

(ﬂ\ = - 225 (Opy *+ Opy %) Vo,

B = \qv, T T B7.3
.3
g = (92 - g®e80 001 Jo.
9 T\ Fa, 57 . 2 57.%
‘e
_ /ds . 57.3 g cos Bq
p2 - (Eﬁ:\/ == GCLi 0'0 - i 2
c o
- (48 = _
q, = (G.CL> = € 0,1 Vo-
Q

Equations (1la) and (12a) are solved by putting

T, t r, T
a=aG+L+c]e + ¢, e 5

. r.t Lt
V=7V, +Btd,e T+ d e

and we find

L =% (V a)__pz__E;-'x,(v )____q_z__._
= Q>0 p]q —1% q:\’ . O:C(O plqa—pqu

2

r, and T, are the roots of the equation
2 — =
r?-r(p +q)+p 9, -5 ¢ 70

The factors e,, G,, &;, Gz follow from

=

inter—-

(11a)

(12a)

(13)

(14)

(15)

(16)



g, +¢ =-1L, r,0 Q6 +r.d,, 1,4, = Q 6, #p d,; (17)

d; +dp = - B, 1,8, = qu8, * P&, Ay = 19;0,+p,d, . (18) )

Equation (16) has real negative roots, so long as the initial

velocity does not fall to stalling speed. In the former example,

when Vg, &, lies close to X (V,,%) = O, we have

- 1.64 cos ~4&
r? + 5.68 X 10 2VO + 7 % r + 1.35 x 10 VJ? + i
8] .
1.93 x 10° cos® 6,
+ 2 = 0,
Vo -

and the rcots become complex, only wﬁen V, falls below
23.4 foos 8, . | -

The oscillations from the instant we approach the line of
equilibrium of forcee normal to the direction of f1ight, can now
be surveyed in detail. If we again consider simultaneous values
of V,a then the V, & curve can only reach .the line of equilib-

rium for the perpendicular forces, when V and o« rise or fall

together, since, at the instant of crossing the line of equilib-

=

. da
Tium =+ = 0, the curve runs in the direction of the V-axis. _
Should o, for instance, rise and V fall, then %% would first
be positive, then zero and then again positive, that is %% mst

hagve a minimum value and, at the same time, become zZero at the

instant when the line of equilibrium is reached. The expressions

T, t 1ot 2 Tt Tyt
%—%=c‘1rie’ +0,r.e° and dta=91r12e Ut 8,17 e 2 cannot
be zero together, when r, and 1, have different values. If,
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therefore, @ increases and V decreases, or o decreases and
V increases, then the ¥V, o curve will certeinly remain perma—
nently close to the line of equilibrium; but will only reach it
affer a very long time (theoretically ¢ = ®). When a and
V increase or decrease simaltaneously, the line of equilibzium
will be crossed once and thereafter the V,a curve will again
remein in close proximity to the line of eguilibrium.
The motion can be understood better from a numerical example.

If W = 1830 kg, S = 41.3 m®,

C;, = 0.335 + 0.08730

Cp = 0.115 + 0.005623 o

ther equilibrium exists when a=3°, 6 =7° and V= 36.2m

per second.
Let the equilibrium be so disturbed that, at the begimming

of the ursteady flight, & = 59, V, = 43.2 m per second (Fig. 8)

o
are vaiues which give points lying far from the line of equilib-
rium of the normal forces. In the first vart of the oscillation,
the solution thereforz corresponds to Case A:

2-35 %

a = 0.67 + 4.33e (19)

~2.35%

V = 43.2 - 1.11% + 0.040%e (20)

The calculated values of V and o have been plotted in
Fig. 6 as functions of each other and in Fig. 7, singly, as
functions of +%. The result is, moreover, compared with a very
careful numerical integration (dash lines) and the excellent

agreement between the curves shows that the analytical calcula-—
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tion is very exact.

The equilibrium curve is reached in 1.13 seconds, when o

V = 42 m per second and o = 1°. Now take case B and the values

become

« = 2.85 - 1.77e 0 182 (-222) (21)

+ o.1ze'3'2’(t'1'12)'

-0.152 (%=1 12} (22)

V = 36.05 + 5.95e

Equations (21) and (22) can be used for the wholc course up
%0 t =, since, for % =, they give « = 2.65° and
V = 36.05 u per second, which, therefore, come very close to the
coordinate values o = 3° and V = 36.2 m per second. In order
to estimate the time it actually takes to restore squilibrium, it
rust be borne in mind that the term containing e'a'av(t'l'la),
(vhich from the first is vanishingly emall in equation (32) and
therefore can be entirely omitted) diminishes rapidly. The term
5.958—0.1sa(t-1-12)

therefore, be saia that, with the given disturbance, equilibrium

has the value 0.1 after 28 seconds. It may,

ig practicelly reached in about half a minute

i1V. The General Case. Discussion of the Constants. Analvtical
Treatment.

The general equations for the velocity V, the angle of

attack "¢, +the angle of inclination of the upper wing to the hor- _

izontal 6, and the angular velocity Y = %% are



%% = %% - g s8in 6 + g;%g-cos fa - gé%g'GD vE,
< = 5L:5 %s, (Ia)
%%.= Y - %.[15 (o - iy) + 57.3 glcos & + | ,“F;liié
+ g sin GG] - €C, V, (11a)
% -5 | ~ (IIIa)
Y o (f-mVP-av V. (1va)

Among the coefficients appearing in these equations, some

aTe always invariable even under different flight conditions

(permanent constants), waile others vary urnder different flight =

conditions and can only be regarded as constant within a given

time interval (temporary constants).

To the former class beloéng:

1. Total weight of airplane, neglecting variation in weight
due, for instance, to consumption of fuel;

3. Supporting surface;

3. Angle between upper wing and propeller axis;

4, Acceleration due to gravity, g;

- . _ 8 r 9 My
5. Damping coefficient, d = —— H 3o v°
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The temporary constants are:
1. Propeller thrust and air density.

For the propeller thrust, the expression

T=T,-2=57V0

> 0Q >
i

was introduced. T, and P' are constant within a given time in-
tervel, but all three quantities may vary in different time inter-
vals.

af s regarded as con-
da o
t ig possible to use dif- _

2. The static stability m = By —

Wk V
stant within a given time interval, but i
ferent values for m in different time intervals, when passing
from one sfate of flight to anothezx. L

3. As already stated, f varies with the position of the
elevator. If, for instance, at the beginning of the oscillation,
the moments of the wings and of the tail balance at an angle qf_
attack of 3° and the elevator is then turned so they balance at
9°, we will have f = 3 m for the first interval and £ =9 nm
for the second.

4. The coefficients C;, and Cp are here introduced as lin-
ear functions of a: G =0y  + Gy &, Oy = Gy, + Cpy & 1In
this connection Cpo, COpn1s Opg, Cpy 2re assumed to be constant_
within any given time interval. Thege coefficients will, of -

course, vary in the different time intervals, if &« increases Qr

decreases.



If we now undertake the golution of the general equations by
mumerical processes, with given values of the permanent and tempo-
Tary constants, starting fiom a definite instant, t = 0, with
arbitrary initial values of Vg, G4, 9, Yé;/%fll elways be found
that at first the velocity only changes slowly, in comparison
with the angles. This fact offers a very easy way for analytical
treatment, by assuming in the first approximation, as in the case
of neutral equilibrium, that V = V, constant. Equation (Ia) |
drops out and we have only to solve equations (IIa), (IIla), and o
(Iva), in which 7V 1is put equal to V,. These equations are,
however, all linear, when OCy and C are lirnear functions of a,
which is a great advantage in vorking out the problem. ﬂoreove:c,_
these three equations are reducible to two, provided a certain
correction is introduced for diving. The values found for
Vos % B, ¥, are then put into equation (Ia) and we obtain, by
simple integration, a second approximation for V, which, %o-
gether with the previous values for «,6 and ¥, presents an
excellent solution for a definite time interval. These analyticai
exXpressions, as shown by comparison with sqlutions by means of
fixed coefficients, give the actual path of flight very well for
an interval of about two seconds. If it is desired-to follow,
during an extended period, until equilibrium is reached, the non-
gteady flight caused by any disturbance on a stable airplane, by

the same methods as for a neutral airplane, the above calculation

can be used in conjunction with the method of small osoillationsf
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During the first seconds, we calculate by the above method and
thereby determine the course of V, o 6, Y. When o has com-
pleted its large variations and has Eubstantially reached its
equilibrium value, we calculate the further course, up to equi-
librium, by the method of small oscillations, making use of all

four equations and proceeding from the final values of the present

method. Such an example is worked out in No. VII.

Y. Problems of the General Case. —

1. Let an airplane be in equilibrium, with all permanent and
temporary constants known, and let the equilibrium be disturbed
by some cause, such as a gust, so that the wvelocity is changed toT_
Vo, the angle of attack to Gy, the inclination with the hori-
zontal to eo,‘ and the angular velocity to 7Y,. What is the
course of the non-steady motion now set up? More especially, how
does a stable airplane return to equilibrium? —

3. Let an airplane be in equilibrium and s deflection be im-
parted to the elevator. The values in the state of equilibrium
V, «, 8,Y =0 are to be taken as initial values. In the differ-
ential equatioﬂs, howvever, a value of f is to be put, correspond-
ing with the new position of the elevator. Again a non-steady mo-
tion sets in, vhich has to be followed. I+t must be especially in-
vestigated, as to how this deflection of the elevator affects
stable (m > 0), neutral (m = O) and unstable (m < O) airplanes.
By the method of subdivision into time intervals, it is always

possible to give successively different elevator settings. A% the
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moment of setting the elevator, we must start from the initial
values of V, o, 8, ¥, but, on the other hand, we must introduce,
into the differential equations, the particular value of £ which
corresponds to the new elevator seiting. _
3. Let an a2irplane be in flight under engine power. At a given
moment, the engine is shut off and a new setting is simultaneously

given the elevator. The values for V, «, 6 and Y, during engine-

driven flight, stand as initial values. The differential equa-

tions must, however, be those of gliding flight; that is, T = O,

and in the expression Cp = Cpp + Opia , Tfor the corresponding
1A

a position, p', defined by T =3 s S Vo' mast be omitted and,
in ite »lace, an amount put, vwhich corresponds to the drag of the
propellsr revolving slowly. The reverse takes place when passing
from gliding flight to power flight.

4. The stalled condition can very well be treated by the
present metiwd, since, precisely in this condition, the velocity
changes very slowly. All the phenomena peculiar to stalling can,
putting the initial values characteristic of this condition (1afge
angle 65 attack and low speed) in the differential equations for
such velues of Cp = Opo + Opta, Cp T Opo + Op1® as correspond to
the o position.

5. This method also suffices admirably for the treatment of

diving flight, since the velocity in this case has been found to

change but slowly with variations in the coefficients, variation



of £ due to change of the¢ elevator position and variation of
T in passing from engine-driven flight to gliding flight.
In 2ll these cases, we have to deal with the following
mathematical problem. A system of four differential equations
is given, with definite values of the permanent and temporary
constants. Solutions for the four variables are sought as func-
tions of the time with initial values of Vg, ag, 8o, Ye». fOT
t = 0. If these solutions are to hold for a fairly long period,
the same proﬁlems must be solved for consecutive time intervals,
the final values of V, o, &, ¥, of the one time interval being
the initial values of the next. The general analytical method
" of working out these problems is given below and explained by
examples. The actual solution of the above special problems is
reserved.

VI. Application of theé Analytical Process to the
General Problem.

In all non~-steady flights, the velocity V varies but slow-
ly in comparison with the angles & and 6. In solving equations
(Ia), (IIa), (IIIa), and (IVa), it is, therefore, assumed, in the
first approximation, that V = V5, is constant. We then have

to deal with the following equations: _ _ o

da _ 57.3 g cos 6 _ ¢ a)v
dt Vo (Cpo + 0p1 OV, + Y . (33)_ _

a6 _ v,

at =" (24)
ay
at

in which

(f - ma)Voo - d Vo ¥ (285)

_ 57.3 A -
N L2 &8 (28)
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Equation (Ia) comes first into consideration in seeking a second

approximation for V. At first, the terms
- Iwg (o - ig) + g sin 6a  are again neglected in comparison with
57.3 g cos 6-. If, for instance, T = 485 kg, W = 1530 kg, and

8= 230° +then

-IZ (0 - i) + g ein 6a = 0.34a + 3.11 i

W

57.3 g cos B o 530 a ;

and this neglect is, therefore, justified. When 6 approaches
-90° in diving flight, then these neglected terms again come into
consideration. The correction, which then becomes necessary,
will be discussed later.

It further appears that, except in diving with large oscilla~-
tions of 8, ©57.3 cos® can be replaced by 57.3 cos 85, in
which 6, 1is the initial value of 6, since (with the variations
in © considered here) 57.3 cos © only changes by a small per—
centage, which (as comparison with numerous exact calculations
always reaffirms) does not materially affect the result. We have,

therefore, only two equations to deal with:

da _ 57.3 '
da - %;;cos 86 _ ¢ Cro Vo - €Cp1 Vo G+ Y (37)
%Z_Yb— = (f - ma) V40 - 4 VoY - (28)

from which € is at once given by

=Y (39)

&l
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The solution of equations (27) and (28) is obtained by the

- é 2
I-r--ﬁ—vzs'[S'?.:’:gcos%-EZ_GLOVO]+H

values
On putting
we find
B=- .

N Vo

The values

% - L=

Yo ~ B =

We therefore obtain for =, and T,

a =L +pler‘t +pzer2t

Y = B + qle:r:l g qeerat

N=m+ ¢ d Cry

i

€C V. £
[57.5 g cos 6 - € Opp Vo7 ] + —140=

(20)

(31)

(33)

of B, R, %, 9, T,, T, are determined by

m, +m; p,T, =~ € Cgy Vo P + Qy;
pzra = - E.GLI Vo B +q2;

n, +n,; 9,7, = -m Vs> p, — d V5 Q3
Qet, = - m Vg pp - 4 Vg Qo

2 + T Vo(d + €C14) + N Vo~ = O,

from which we obtain

when

Hence

- 2
r, =-R, Vo + 7y R, - m,

T, =-R Vo -Vo/R° - m

R, ""‘%'(‘:CLI -d.), R3=%(€CL1+d)

the Quadratic equation

(33)

(34)

(35)



We
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+———a-3-—'—-sinvot/ m - R,° ],
=B+ g n2Vob [-e:l cos Vot / m - R® +
+—2___ gin V,t /m-R,".],
[ m - RS
-RoVo t e
= 6, - c, +Bt +e 2'e [cn cosvot/m—Rf +

¢
+——3-—sinvot/m—R121,
\_/m"Rlz .

=e_0.=eo-'a1-L+Bt+

~RaVot - s
+e 20 [s,cosvot m - R? +—=—2——2—
. o - R
sin Vgt /m-—Rf]

have, at the same time,

i
&
+
(0]

% - L, a, = - B, (6 - L) +v“1— (Yo - B),
o .
tYo-- B, € = - n Vo (ao - L) + R] (lYO - B)J
a, = 1 [ m VO(dO - L) - € CLi -((YO + B)] > ;
N Vy

L1 [mVy Re(% - L) + (m=-€ Opg Ry) (Yo =BT,
N Vg

€C
éu'-'i’—‘g%'[vod (0 - L) + Yo - Bl,

-

< Ont [Volm + & Ry ) (ag - L) - R (Yq ‘-.B)]

82 T ¥ v,

(38)

(39)

(40)

(41)

(42)

(43)
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These formulas remain unchanged, when m - R,®* < O, excepi-
ing that it is necessary to replace m - R, Dby R’ - m and
the trigonometrical functions bv the corresponding hyperbolic
functions.

In the case N = 0, which is not specially notable in its
characteristics, the formulas break down. If, in suck an in-

stance, we take

Fd - 2 f (44)
—=—= [57.3 g cos B, - € 01 Vo 1 + :
2 R.Vg L g o Lo Vo 2 Ry’ )

g ='o= €0 VoG , €0 XK-f | -
2 Ry Vg 2 R4

they then become

-2 R, Vot
a= o, + KV t+A (1 -e 270, | _.(45)_
- 28R Vst e
- < 3 ks - 46
Y=Y, + €0y KVt -4a7, (1 - e o (48)
: 1 2
8 =80+ (Yo -Ad Vo)t + 35 €Cpy KV & +
+Ad gy o TR0ty (47)
L =6 - % + (Y -4 Vo - KVp) t +
. € Cpis ~23R._ Vot
+%€0L1Kvoat2-*2_lgi_(1-e 270%). (48)
A second approximation for V ig obtained from 3
t g 6o COS &g
T o] O P—
V=VO+£ dt[—#‘g-—gmneo*' 57,3 -
g sin 9o % € _ € Cpo Vo N a (g cos 6 - < Opq vog) 5
57.3° 57.3 57.3 0
g sin €5 o
- 575 £ 08 o ¥ ——gym (49)
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in which the values found above for o and 6 must be inserted.
For judging the course of flight, the angle X, between _
the tangent to the path and the horizontal, is of special impor-

tance. If we wish to know how the course of flight is influ-

enced by the setting of the elevator, we must consider d%

af ’
that is, the variation of X with respect to f, the variables

which fix the slevator setting. For this we find

“R_ Vot

¢
%=—I%€—[—2R2+Hvot+e

R,° + RS - m _f
3 R, cos Vgt /m - R,® + -
/ m - R,? . :

sin Vot /m - R,? M | (50)

or, when N =0

b ]

3 Bz Vo' (51)

&

C €
= g [1+23R°V° t° - 3R, Vot - e
2

o

VII. Examples.

Taking the same data as above, S = 41.3 m?, W = 1530 kg, ~

A
T = 485, = = 0.81 (at an altitude of 2000 m),
(s}

%3‘%& = 72—, O = 0.325, Opj = 0.0672; Opo = 0115,

6pi = 0.00563; ——

the figures correspond approximately to the Diw C V. Let )
m = + 0.00181. (This value was found in calculating the moments
for the Dfw C V, though with the negative sign) and let

d = 0.0238 (also the same as for the Dfw C V).
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1. Tt e of equilibrium (Vg = 36.2 m per second,

= 3°, & © and Yg=0) is so disturbed that the velocity

L4 £ z ] o = O
increages o 43.1 m per second and the angle of atback to €.97.
The non-steady motion, which now sete in, is examined and it is

thus determined in what way the airplane returns to equilibriunm.

11ibrium when

In the general formulas, we must put
=7, Y5 =
egui

in

v Yo

= 4
Yy 43,1, G
Since the moments arc assumed o De
o}
@ =3, we mist put
f - 0.00181 x 3 = 0, whence £ = 0.00875
We then Tind, for the first few seconds:
— 1. 68% - A e
a = 2.07 + 8.15 ¢ cos(101.3% + 38.7, , ]
- —-i-68% 7 = . 1O
6 = 2.88 + 3.34% + 4.8e. cos{101.2% - 37.4)"7,
. s -1+ 68t
V = 42.8 -~ 0.32% - 0.377%° + 0.314e
’ . o]
cos(101.2% + 7.8) .
After 1¥o seconds, we obtain
o ¢ RPN« T . . _ =0 ond
= 1.9, 8 =97, V= 41.1 m per second, 7Y = 3 pPer £6CONG. _
These values (f romeining unaltered) can be inserted anew B
since there is no new set- B
he further course

in the formula, as . a5, €5, Vs,

We thus obtain for

o
gt N

),

[oaY

ng of the elevator.
2) |
sin(234.7 - 96.

ti

(from £t = 23):
— 1 g t—

@ = 2.27 - 0.518e (
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-1 a(t-2)

D
|

= 9.37 + 2.4{t - 2) - 0.485e

cos(96.5¢ - 234.2)°,

V = 41.1 - 1.03(t - 2) - 0.205(% - 2)° -

-1 s(t_ 2)
- 0.0233%e cos(96,5t - 173.5).

The numerical values given by these formulas have been = - _

plotted in Fig. 8, that is, from %t = 0 to t = 3, by the first
group of formilas and from +t = 23 %o ¥'= 4, by the second group.
The continuous lines have been calculated from the formuias
while the dotted lines are those obtaincd by mumerical integra-
tion. The agrecment is excellent.
In Fig. 9 the same curves (dash) are shown once more from
t = 0 to t = 2; while the course from %t = 3 to t = 13 (also
dzsh) has been calculated by the method of small oscillations,
in tﬁe neighborhood of the position of equilibrium, with initial
values corresponding o t = 2. For comparison, the result of
the numerical integration is also shown (by continuous lines).
3. Let the airplane be in equilibrium. Then Vg =,36.2_m
per second, Gg = 30, eg = 70, ‘Yg = 0. Let it be given such o
an elevator setting that the moments are in equilibrium only at
a = 8°. The non-steady motion set up in this way is to bé fol-

lowed. We again insert m = + 0.00191 and obtaini

V, = 36.2, 0o = 3 6o = 75 Yo = O,

f-m9=0, f=0.0172.
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We find:
-1.41t 0
a = 6.58 - 4.93e cos(85.3% - 43.4) ",

-1 1

t 0
@ = 5.87 + 7t ~ 3.82e sin(85.3%t - 17.3) ,
' 2 -1s1% | o]
V = 36.23 + 0.42% - 0.8% - 0.286e sin(85.3% - 0.8) .
The results of this calculation, from + =0 to t = 3, are

plotted in Fig. 10.

Translated by
National Advisory Committee
for Aeronautics.
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Figa.3,4,5. Lines of equilibrium of the forces in the direction of flight and at
right anglestherato

V,ft./sec.




Fig.6,7.
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Fig.7 Return tc equilibrium of an airplane
7ith zero pitching staoility.
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Figs.%,9.
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Fig.9 Return to equilibrium after a disturtance.



Fig.10
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FiglO Transition from angle of attack,cx = 30
to = 9° prcduced by a deflection of

the elevator,.



